Characteristics of Deformation and Transformation in Ti<SUB>44</SUB>Ni<SUB>47</SUB>Nb<SUB>9</SUB> Shape Memory Alloy
نویسندگان
چکیده
منابع مشابه
Deformation Properties of TiNi Shape Memory Alloy
In order to describe the deformation properties due to the martensitic transformation and the R-phase transformation of TiNi shape memory alloy, a thermomechanical constitutive equation considering the volume fractions of induced phases associated with both transformations is developed. The proposed constitutive equation expresses well the properties of the shape memory effect, pseudoelasticity...
متن کاملTransformation of Embedded Shape Memory Alloy Ribbons
Shape memory alloy (SMA) wires can be embedded in a host material to alter the stiffness or modal response and provide vibration control. The interaction between the embedded SMA and the host material is critical to applications requiring transfer of loads or strain from the wire to the host. Although there has been a significant amount of research dedicated to characterizing and modeling the r...
متن کاملTransformation-Induced Creep and Creep Recovery of Shape Memory Alloy
If the shape memory alloy is subjected to the subloop loading under the stress-controlled condition, creep and creep recovery can appear based on the martensitic transformation. In the design of shape memory alloy elements, these deformation properties are important since the deflection of shape memory alloy elements can change under constant stress. The conditions for the progress of the marte...
متن کاملTransformation Reversibility in Fe-Mn-Si Shape Memory Alloy
The change of the surface relief associated with stress-induced epsilon martensite before and after the reverse transformation in an Fe-33%Mn-6%Si alloy (Msz264K) has been investigated. The permanent strain of a 2.7% tensile-strained specimen was 1.1% after the reverse transformation. In this specimen, a large part of surface relief still remained after heating to 623K (above Af). When five tra...
متن کاملPhase Transformation Temperatures for Shape Memory Alloy Wire
Phase transformation temperature is one of the most important parameters for the shape memory alloys (SMAs). The most popular method to determine these phase transformation temperatures is the Differential Scanning Calorimeter (DSC), but due to the limitation of the DSC testing itself, it made it difficult for the finished product which is not in the powder form. A novel method which uses the U...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials Transactions, JIM
سال: 1992
ISSN: 0916-1821,2432-471X
DOI: 10.2320/matertrans1989.33.346